How to calculate your long term bias for your uncertainty calculation?

The following is an example on how to calculate the long term bias and between batch imprecision for serum sodium for samples analysed between 7/04/2015 and 14/01/2016.

The information is available from your "End of batch report". These reports are listed at the end of your Distribution table and accessed via Lab Stats.

 Questionnaire 					temporany unav	anable. It the ulst	indution you are in	terested in does i	iot appear on t	ne list below	, please dy again later.
	Distribu	Distributions									
		Code Distribution Dat	Return Date	Summary Report	Standard Report	Penort	Summary Report	Eull R	enort		
Queued Jobs				ounnury report		nopon	outliniting report	- units	port		
Users	Mainline	Chemistry	No. 1007/00	1.0	16	- 0	1.0	1.6	D	Daw Data	Instant Desert
Pools Materials		QP Mon 04/07/10	Tuo 21/06/16	View on screen	View on scree	n Request PDF	View on screen	View on screen	Request PDF	Raw Data	Instrument Report
Analytes Regions		ON Tue 03/05/14	Tue 17/05/16	View on screen	View on scree	n Request PDF	View on screen	View on screen	Request PDF	Raw Data	Instrument Report
Reports		QM Mon 04/04/16	Mon 18/04/16	View on screen	View on scree	n Request PDF	View on screen	View on screen	Request PDF	Raw Data	Instrument Report
Manufacturers		QL Mon 29/02/10	6 Mon 14/03/16	View on screen	View on scree	n Request PDF	View on screen	View on screen	Request PDF	Raw Data	Instrument Report
Instruments		QK Mon 01/02/1	6 Mon 15/02/16	View on screen	View on scree	n Request PDF	View on screen	View on screen	Request PDF	Raw Data	Instrument Report
Sections Scheme Admin		QJ Mon 04/01/16	6 Mon 18/01/16	View on screen	View on scree	n Request PDF	View on screen	View on screen	Request PDF	Raw Data	Instrument Report
Lab Orders Prices		QI Mon 30/11/1	5 Mon 14/12/15	View on screen	View on scree	n Request PDF	View on screen	View on screen	Request PDF	Raw Data	Instrument Report
Site Text		QH Mon 02/11/1	5 Mon 16/11/15	View on screen	View on scree	n Request PDF	View on screen	View on screen	Request PDF	Raw Data	Instrument Report
Audit Add Lab		QG Mon 05/10/1	5 Mon 19/10/15	View on screen	View on scree	n Request PDF	View on screen	View on screen	Request PDF	Raw Data	Instrument Report
Add Region Mailer	Page 1 d	of 23.123456789	10 11 12 13 14 1	5 16 17 18 19 20	21 22 23						
Utilities Report Statuses	End of	f Batch Reports									
	Scheme	From	То	Create	d						
	Mainlin	e Chemistry NJ (06/0	7/2009) NS (06	/04/2010) 09/08	2011 Report	Request PDF					
Find Lab:	Mainlin	e Chemistry NU (07/0	6/2010) OC (07	//02/2011) 15/08	2012 Report	Request PDF					
►Go	Mainlin	e Chemistry OE (04/0	4/2011) ON (03	//01/2012) 15/08	2012 Report	Request PDF					
	Mainlin	e Chemistry OW (01/	0/2012) PF (01	/07/2013) 17/03	2014 Report	Request PDF					
AE Lab Stats		o Chomietov RO (02/0	6/2014) PZ (02	/03/2015) 16/10	2015 Report	Request PDF					
AE Lab Stats Lab Profile Scheme Selection	Mainlin	e chemistry P & (02/0									

The following table will be provided for each measurand for each Section (analyser) registered with us.

The End of Batch report

For a large number of our Schemes, material is prepared and distributed on more than one distribution, e.g. a batch of Serum chemistry samples consists of 8 levels and each level is distributed on 4 or 5 occasions over a 10 month period. This allows calculation of your overall bias and between batch imprecision over this period.

The report provides the mean, SD and coefficient of variation (CV%) of your results for each level over this time period. Reference Target values for your measurands (where provided) are available from your Standard reports.

Sodium	Pools									
Method: Indirect ISE	M871	M872	M873	M874	M875	M876	M877	M878	Units	
Your results										
Mean reported results	106.4	112.8	120.1	127.5	134.8	141.8	149.0	155.0	mmol/L	
SD reported results	0.9	0.8	1.2	0.5	0.5	0.8	1.0	0.7	mmol/L	
CV reported results	0.81	0.74	0.96	0.41	0.37	0.59	0.69	0.46	%	
Number of results	5	5	3	4	4	5	5	5		
Reference Target	108.2	114	120	125.9	132.1	139.3	145.8	152.9	mmol/L	
Method Result Stats										
Mean method mean	107.7	114.2	120.8	127.4	134.1	140.7	147.5	154.2	mmol/L	
Median CV	0.88	0.88	0.54	0.74	0.71	0.68	0.61	0.73	%	
Overall Result Stats										
Median CV	0.92	0.88	0.59	0.75	0.71	0.71	0.66	0.73	%	

How to calculate bias

Compare your Mean reported results with the Reference targets or if these are not available your Mean method mean and calculate the linear regression equation of your results (y) on the Reference target (x). This will be available on the End of batch report on the next software release, however, meanwhile, this can easily be achieved in Excel.

Copy and paste the table into Excel and calculate y=mx+c. For the above example this produced the equation:

y =1.1054 x- 12.529

Mean reported results	106.4	112.8	120.1	127.5	134.8	141.8	149	155	mmol/L
Reference Target	108.2	114	120	125.9	132.1	139.3	145.8	152.9	mmol/L
Mean method mean	107.7	114.2	120.8	127.4	134.1	140.7	147.5	154.2	mmol/L

Decide on your critical points for expressing bias (x) e.g. sodium of 130mmol/L

Apply in the equation:

Y = 130 * 1.1054 -12.529 = 131.17 mmol/L

Bias =(x-y)/ x * 100 %

Bias = (130-131.17)/ 130 * 100% =+ 0.9%