Weqas Unit 6, Parc Tŷ Glas Llanishen, Cardiff, CF14 5DU

Tel: 02920 314750 Email: contact@weqas.com

EXTERNAL QUALITY ASSESSMENT

INTERNAL QUALITY CONTROL

REFERENCE MEASUREMENT SERVICES

EDUCATION & TRAINING

Weqas

GLOBAL PROVIDER OF QUALITY IN DIAGNOSTIC MEDICINE

Getting the best out of your EQA data for ISO 15189:2022 compliance

Annette Thomas / Gareth Davies

What do laboratories need from an EQA provider?

Downloaded from jcp.bmj.com on March 13, 2014 - Published by group.bmj.com JCP Online First, published on March 12, 2014 as 10.1136/jclinpath-2013-201621 Best practice

External quality assessment: best practice

David James,¹ Darren Ames,² Berenice Lopez,³ Rachel Still,⁴ Wiliam Simpson,⁵ Patrick Twomey⁶

Weqas

Expectations of EQA Provider

* A Thomas, Accred Qual Assur (2009) 14: 439-444

What does ISO 15189 say?

Definitions

3.32

verification

confirmation of truthfulness, through the provision of objective evidence that specified requirements have been fulfilled

EXAMPLE 1 Confirmation that performance specifications of a measuring system are achieved.

EXAMPLE 2 Confirmation that a target measurement uncertainty can be met.

Note 1 to entry: Verification is the process by which the laboratory confirms that the established performance claims of a measuring system, e.g. trueness, precision, reportable range, can be replicated in the laboratory before human sample examination is performed.

ISO 15189:2022 Clause 6.5: Equipment calibration and metrological traceability

6.5.1 General

The laboratory shall specify calibration and traceability requirements that are sufficient to maintain consistent reporting of examination results. For quantitative methods of a measured analyte, specifications shall include calibration and metrological traceability requirements

6.5.2 Equipment Calibration

The laboratory shall have procedures for the calibration of equipment that directly or indirectly affects examination results. The procedures shall specify:

b) recording of the metrological traceability;

ISO 15189:2022 Clause 6.5: Equipment calibration and metrological traceability

6.5.3 Metrological traceability of measurement results

The laboratory shall establish and maintain metrological traceability of its measurement results by means of a documented unbroken chain of calibrations, each contributing to the measurement uncertainty, linking them to an appropriate reference.

b) The laboratory shall ensure that measurement results are traceable to the highest possible level of traceability and to the International System of Units (SI) through:

- calibration provided by a competent laboratory; or
- certified values of certified reference materials provided by a competent producer with stated metrological traceability to the SI;

c) Where it is not possible to provide traceability according to 6.5.3 a), other means for providing confidence in the results shall be applied, including but not limited to the following:

 results of reference measurement procedures, specified methods or consensus standards, that are clearly described and accepted as providing measurement results fit for their intended use and ensured by suitable comparison;

Traceability – Weqas QCRM

•Testosterone and Cortisol Tandem MS standards are assayed quality control material for verification of "in house" prepared calibrators

•Standards prepared and value assigned using the Weqas Reference Measurement

Laboratory using traceable material of the highest metrological order.

•Assists with ISO 15189:2022 compliance.

Testosterone Calibrators

CE

Testosterone Targeted Calibrators Size: 1.0 mL Lot No: 032418 Expiry: 03-2026

				_								
Testosterone Targeted Calibrators												
Sample ID	Target Value (nmol/L)	SD	%CV	Expanded Uncertainty								
Level 0	0	-	-	-								
Level 1*	0.50	-	-	-								
Level 2	1.04	0.02	2.00	0.03								
Level 3	2.88	0.05	1.85	0.09								
Level 4	7.63	0.16	2.09	0.24								
Level 5	15.1	0.31	2.06	0.48								
Level 6	23.48	0.29	1.24	0.74								
Level 7	38.32	0.84	2.20	1.21								

Reference Measurement service provided as part of Weqas EQA programmes

Flame Atomic Absorption/ Emission

Spectrometry

- Sodium, Potassium, Calcium
- Magnesium, Lithium

IFCC Enzymes

• AST, ALT, LDH, GGT

<u>HPLC</u>

• HbA1c **

** Provided by IFCC Ref lab, Netherlands

IDGC-MS & ID-LC-MS/MS

- •17ß-Oestradiol
- Progesterone
- Testosterone
- Cortisol
- •Bile Acids
- •Creatinine
- •Cholesterol
- •Glucose
- •Urate
- •Triglyceride
- •HDL *

 \ast Currently provided by CDC lab Rotterdam and WEQAS

Advantages of Reference Measurement Targets

- Traceable to higher order
- Establishes method traceability for the lab requirement of ISO 15189:2022
- Independent assessment of manufacturer traceability claims.
- Highlights the pitfalls of using the trimmed overall mean as an accuracy target in EQA Schemes
- Overall mean and method mean may not be traceable, may not be stable, may be influenced by large numbers from one manufacturer.
- Useful in the post market vigilance of the IVD Directive

	Scheme: Serum Chemistry, Distribution Code: SC0425.									
	Creatinine (umol/L) 1 2 3 4									
	Reported Result	-,	251	321	90	538				
	Method Corrected Result		251.0	321.0	99.0	538.0	1			
	Enzymatic	Mean	253.1	326.8	103.1	550.5	1			
	Enzymatio	SD	61	7.8	2.9	10.6	1			
		Number	64	63	61	62	1			
		Uncert	0.77	0.98	0.37	1.34	1			
	Cobas C Module	Mean	255.6	330.9	104 1	555.0	1			
		SD	44	4.8	18	7.5	1			
		Number	43	41	40	42	1			
		Uncert	0.67	0.75	0.28	1.16	1			
	Overall	Mean	249.8	323.1	101.6	541.4	1			
		SD	7.9	10.0	3.6	15.6	1			
		Number	123	121	122	400	1			
-		Uncert.	0.71	0.91	0.33	1.42				
	Reference Values ID-GCMS		249.9	318.7	102.6	538.1				
	Ref. Value Uncertainty		2.16	2.76	0.89	4.66	1			
	Non-scoring Reference						1			
	Values									
	WeQas SD		ŏ.ŏ	10.8	5.4	17.8]			
	SDI	0.13	0.22	-0.67	-0.01	0.25				
	Sigma Metrics									
	Critical Level 1: 75 µmol/L									
	Minimum Acceptable score	Critical L	Level 1 S	igma sco	re	2.0				
	MAPS Allowable TE	9.5%								
	MAPS Allowable bias %	5.0%	Lab bia	s %			2.1%			
	MAPS Allowable CV %	Lab CV	3.6%							

Please note: Linear regression uses CF corrected data.

This Distribution SC0425

F

Traceability From Weqas Reports

- Reference measurement values shown on report (and reference value uncertainty).
- Full traceability chain to SI units available.
- Lab results compared directly to reference values
- SDI scores, Sigma scores and bias plot based on reference values

ISO 15189:2022 Clause 6.5: Equipment calibration and metrological traceability

We<mark>q</mark>as

6.5.2 Equipment Calibration

The laboratory shall have procedures for the calibration of equipment that directly or indirectly affects examination results. The procedures shall specify:

c) verification of the required measurement accuracy and the functioning of the measuring system at specified intervals;

Cholesterol mmol/L											
	Your reported result (mmol/L)		Method: Chol Oxidase (CDC)	Instrument Model: cobas c 501	Overall	Scoring Reference Value	Non-Scoring Reference Value				
		Mean	4.668	4.681	4.662	4.63	4.56				
Sample 1	4.6	SD	0.074	0.085	0.078						
		Uncertainty	0.0111	0.0275	0.0102	0.007	n/a				
		n	69	15	92						
	ample 2 5.3	Mean	5.281	5.289	5.287	5.22	5.14				
Sample 2		SD	0.092	0.069	0.093						
		Uncertainty	0.0138	0.0222	0.0121	0.007	n/a				
		n	69	15	92						
		Mean	5.098	5.085	5.101	4.97	5.04				
Sample 3	5.1	SD	0.093	0.103	0.087						
		Uncertainty	0.0140	0.0333	0.0114	0.007	n/a				
		n	69	15	92						
		Mean	4.485	4.483	4.485	4.49	4.44				
Sample 4	4.5	SD	0.078	0.065	0.084						
	4.0	Uncertainty	0.0118	0.0211	0.0110	0	n/a				
		n	69	15	92						

-2 Wegas SD %

+2 Weqas SD %

Blas

Blas

LP0225

LP0325

LP1224

LP1124

LP1024

Assessment of Accuracy Weqas (trueness & imprecision)

From the linear regression analysis equation, y=mx+c, the trueness (bias) can be calculated for any concentration.

Assessment of Accuracy (trueness & imprecision)

From the linear regression analysis equation, y=mx+c, the trueness (bias) can be calculated for any concentration.

Use Cholesterol 5.0 mmol/L.

From report: y = 1.16x - 0.73

when x=5 then y= 1.16*5 -0.73 y = 5.07

Bias = (y-x)/x*100 = (5.07-5.0)/5.0*100 = 1.4%

Imprecision (CV) = Sy.x/x = 0.06/5.0*100 = 1.2%

ISO 15189:2022 Clause 7: Process Requirements

7.3.4 Evaluation of measurement uncertainty (MU)

a) The MU of measured quantity values shall be evaluated and maintained for its intended use, where relevant. The MU shall be compared against performance specifications and documented.

b) MU evaluations shall be regularly reviewed.

c) For examination procedures where evaluation of MU is not possible or relevant, the rationale for exclusion from MU estimation shall be documented.

d) MU information shall be made available to laboratory users on request.

e) When users have inquiries on MU, the laboratory's response shall take into account other sources of uncertainty, such as, but not limited to biological variation.

f) If the qualitative result of an examination relies on a test which produces quantitative output data and is specified as positive or negative, based on a threshold, MU in the output quantity shall be estimated using representative positive and negative samples.

g) For examinations with qualitative results, MU in intermediate measurement steps or IQC results which produce quantitative data should also be considered for key (high risk) parts of the process.

h) MU should be taken into consideration when performing verification or validation of a method, when relevant.

ISO 15189:2022 Clause 7: Process Requirements

7.3.4 Evaluation of measurement uncertainty (MU)

a) The MU of measured quantity values shall be evaluated and maintained for its intended use, where relevant. The MU shall be compared against performance specifications and documented.

b) MU evaluations shall be regularly reviewed.

c) For examination procedures where evaluation of MU is not possible or relevant, the rationale for exclusion from MU estimation shall be documented.

d) MU information shall be made available to laboratory users on request.

e) When users have inquiries on MU, the laboratory's response shall take into account other sources of uncertainty, such as, but not limited to biological variation.

f) If the qualitative result of an examination relies on a test which produces quantitative output data and is specified as positive or negative, based on a threshold, MU in the output quantity shall be estimated using representative positive and negative samples.

g) For examinations with qualitative results, MU in intermediate measurement steps or IQC results which produce quantitative data should also be considered for key (high risk) parts of the process.

h) MU should be taken into consideration when performing verification or validation of a method, when relevant.

From the linear regression analysis equation, y=mx+c, the trueness (bias) can be calculated for any concentration.

Use Cholesterol 5.0 mmol/L.

From report: y = 1.16x - 0.73

when x=5 then y= 1.16*5 -0.73 y = 5.07

Bias = (y-x)/x*100 = (5.07-5.0)/5.0*100 = 1.4%

Laboratory Within Run imprecision

Imprecision (CV) = Sy.x/x = 0.06/5.0*100 = 1.2%

VVeoas

Uncertainty From EQA Data

Weqas

Analyte: Creatinine (µmol/L)

Method: Jaffe - IDMS	M891a	M892	M893	M894	M895	M896	M897	M898
Section Stats								
Mean reported results	64.5	133.6	206.8	276.7	346.9	420.1	490.6	558.4
SD reported results	2.9	3.4	7.3	8.6	7.8	11.0	14.7	12.7
CV(%) reported results	4.51	2.52	3.52	3.10	2.25	2.61	2.99	2.27
Number of results	5	5	4	3	5	5	5	6
Method Result Stats								
Mean method mean	67.7	139.3	213.3	286.6	357.4	428.9	498.4	570.0
Median CV	3.08	2.52	1.91	2.00	2.14	2.14	1.88	2.11
Overall Result Stats								
Median CV	2.44	2.19	1.69	1.81	1.92	1.97	1.70	1.85

Between batch CV% provided on End of Batch reports (12 month review) Pool M891a - CV% of reported results: 4.51% Top-down approach – CV% is method uncertainty (relative standard uncertainty)

Method Linearity from Weqas

Scheme: Serum Chemistry, Distribution Code: SC0423. Distribution Date: 3/04/23 Einal, Penert Issued: 49/05/23											
Distribution Date, 5/04/25, Final, Report Issued, 18/05/25											
Potassium (mm	ol/l)	1	2	3	4	Analyte SDI					
Reported Result		1.80	4.80	2.50	7.20						
Method Corrected Result		1.800	4.800	2.500	7.200]					
Indirect ISE	Mean	1.800	4.849	2.523	7.219]					
	SD	0.050	0.051	0.043	0.099]					
	Number	122	110	112	117]					
	Uncert.	0.0045	0.0048	0.0041	0.0092]					
Cobas C Module	Mean	1.801	4.886	2.536	7.258]					
	SD	0.007	0.058	0.047	0.072	1					
	Number	55	69	63	64	1					
	Uncert.	0.0009	0.0070	0.0060	0.0090]					
Overall	Mean	1.799	4.856	2.516	7.222	1					
	SD	0.051	0.067	0.050	0.101	1					
	Number	123	124	119	120	1					
	Uncert.	0.0046	0.0060	0.0046	0.0092]					
Reference Values						1					
Ref. Value Uncertainty]					
Non-scoring Reference]					
Values]					
WeQas SD		0.052	0.080	0.058	0.102						
SD	I	0.00	-0.61	-0.39	-0.18	<					

Linear series of 8 pools distributed for most routine chemistry programmes

Linear series cover wide analytical and pathological range

Chemistry QCRM linearity panel available as a range of up to 8 samples and are suitable for ISO 15189:2022 method verification

Please note: Linear regression uses CF corrected data.

This Distribution SC0423

1.00 2.17 3.33 4.50 5.67 6.83 8.00

Weqas

Serum Chemistry QCRM

CE

Serum Chemistry Quality Control Reference Material

Size: 3.5mL Lot No: 080118/93

3	Exp.: Jan-2020
-	Exprisent Loto

Creatinine		
Pool	ID-GCMS Target Value (μmol/L)	Expanded Uncertainty
932	110.98	1.38
934	262.15	3.25
936	414.37	5.14
938	559.71	6.94

Weqas Specificity and Sensitivity Studies

Pregnancy testing

Bile Acids

Results

Table 3 shows the summary data from the distributed recovery samples. The predominant group is represented by the Enz-Thio-NADH method (86% of scheme participants), with the Enz-Formazan group representing 5% of scheme participants and the Sentinel Enz-Formazan group 9% of scheme participants.

Table 3 Bile Acid Recovery Experiment: comparison with ID-GCMS Targets

POOL ID		СНС	DLIC A	CID		DEOXYCHOLIC					
			µmol/L								
		ID-G	arget	ID-GCMS Target							
POOL A (sample 4)			103.18								
POOL B (sample 5)						1	08.78				
POOL C (sample 6)											
POOL D (sample 7)											
Returned results	mean	SD	n	% recovery	mean	SD	n	% recovery			
overall	101.18	7.54	111	98.06	137.80	15.87	110	126.68			
Enz-Thio-NADH	99.89	6.59	95	96.81	141.27	15.64	94	129.87			
Enz-Formazan	89.5	1.50	5	86.74	137.00	15.00	2	125.94			
Enz-Formazan (Sentinel)	112.41	4.90	15	108.95	119.42	5.08	15	109.78			
POOL ID		URSOD	EOXYC	HOLIC	CHENODEOXYCHOLIC						
			umol/L		µmol/L						
		Spil	ed Tar	get	<u> </u>	ID-GC	MS Ta	rget			
POOL A (sample 4)											
POOL B (sample 5)											
POOL C (sample 6)		L					77.14				
POOL D (sample 7)			100								
Returned results	mean	SD	n	% recovery	mean	SD	n	% recovery			
overall	57.81	8.44	107	57.81	56.05	7.30	107	72.66			
Enz-Thio-NADH	56.00	4.44	98	56.00	54.25	4.61	95	70.32			
Enz-Formazan	51.50	0.5	2	51.50	51.00	2.00	2	66.11			
Enz-Formazan (Sentinel)	90.47 3.33 15 90.47				77.05	2.88	12	99.88			

High sensitivity Troponin

Method interference Testing

Pre analytical, analytical and Post analytical exercises.

- Serum Chemistry, HIL Indices Programmes, questionnaires sent out as part of Programme repertoire re: pre analytical sample handling, adjustded calcium equations.
- Interference Studies e.g. Bilirubin effect on Salicylate & Paracetamol, HIL indices studies on Serum Chemistry and Endocrine programmes
- Post analytical interpretation / cases provided with Programmes e.g. Porphyrin interpretation cases, Macroprolactin samples, EQA for calculated parameters, pre-eclampsia risk outcomes.

Weqas Interference Reports

The reference value (ID-GCMS) was 184.3 µmol/L for sample 2 and 184.4 µmol/L for sample 3

ISO 15189:2022 7.3.7.3 External quality assessment Weqas (EQA)

a) The laboratory shall monitor its performance of examination methods, by comparison with results of other laboratories. This includes participation in EQA programmes appropriate to the examinations and interpretation of examination results, including POCT examination methods.

b) The laboratory shall establish a procedure for EQA enrolment, participation and performance for examination methods used, where such programmes are available.

c) EQA samples shall be processed by personnel who routinely perform pre-examination, examination, and postexamination procedures.

d) The EQA programme(s) selected by the laboratory shall, to the extent possible:

1) have the effect of checking pre-examination, examination, and post-examination processes;

2) provide samples that mimic patient samples for clinically relevant challenges;

3) fulfil ISO/IEC 17043 requirements.

Clinically relevant samples at diagnostic cut-points

Clinically Relevant Range and number of samples

- Sample numbers for each scheme assessed on an individual scheme basis e.g. Serum Chemistry (linear panel of 4) and POCT Glucose / Urinalysis (1 sample per distribution).
- Appropriate sample matrices, endogenous, commutable, challenging, linear panels to assess method linearity, specificity and sensitivity
- Weqas covers pathological and analytical ranges. Careful selection of endogenous material to ensure range is covered, selected sources of material e.g. real patient material, some samples spiked to achieve full range and/or provide linear panels
- Cover critical "diagnostic cut points" e.g. high sensitivity Troponin, urine hCG, HbA1c, POCT CRP
- For Qualitative schemes we provide an appropriate number positive and negative pools, underpinned with known quantitative concentrations.

.

0000

0000

0 0 0 0

0000

0000

0000

0 0 0 0

0000

0000

0 0 0 0

0 0 0 0 0 0.00 0 0 0 0 0 0.00

0 0 0 0

1 0 0.00

1 0 1.00

1.67

0.00 1.67

0.00 0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Weqas Reports - Clinically relevant samples

						Distrit	Scheme: PoCT (ution Date: 17/0/	CRP. Dist 4/18 Fin:	ribution (Code: R/	4/05/18							
Scheme: HbA1c	. Distribut	tion Cod	e: HC032	25.]	(CRP (mg/L)	* IO. T III	1	2	Analyte SD) s						
Distribution Date: 25/0	3/25. Fina	I. Repor	t Issued:	12/05/25	-	Reported Result			88.00	25.00	7	<u> </u>						
HDA1C IFCC (mmo	i/moi)	1	2	Analyte SDI	-	Method Corrected Result			88.000	25.000	H	l r						
Reported Result		84.0	43.0		ТО	QuikRead or	OuikRead oo Mea		85 156	23 000	1							
Method Corrected Result	1	84.00	43.00		CD.	a a a a a a a a a a a a a a a a a a a		SD	8.054	2.875								
POCT Boronate Affinity	Mean	81.92	46.24		50			Number	7	8								
	SD	2.1/	1.43					Uncert	3.8053	1.2704	1	1						
	Number	201	206		<u></u>	QuikRead or		Mean	85,156	23.000								
Africa O	Uncert.	0.191	0.124		YC			SD	8.054	2.875	1							
Atinion 2	Mean	81.99	46.29		Pr			Number	7	8								
	SU	2.09	1.32					Uncert	3.8053	1.2704	1							
	Number	158	159			Overall		Mean	78 617	22 000								
Overall	Meen.	01.208	0.131					SD	6.204	1.574								
Overall	Intean CD	01.40	40.74		2			Number	35	36	1							
	Number	5.27	2.04					Uncert	1.3108	0.3279								
	Uncort	0 100	0 111		1	Reference V	alues				1							
Poforonco Valuos	Uncert.	0.100	0.111			Ref Value U	ncertainty				-							
IFCC		84.20	47.50			Non-scoring	Reference Values				-							
Ref. Value Uncertainty		1 300	1 000		(WeQas SD			5,703	1,740	1							
Non-scoring Reference		1.000	1.000				SDI		0.50	1.15	0.8	2						
Values											00100	Julicon	Surconcernico eneco :		I		I	
WeQas SD		3.67	2.46			Please note: L	inear regression u	uses CF c	orrected d	lata.	SureS	Screen	SureScreen hCG GHCGC	_	Negative	Negative	Negative	Negative
SD		-0.05	-1.83	0.94	1						SureS	Screen	SureScreen hCG GHCGC	_	Positive	Positive	Positive	Negative
	Sigma Met	rics			1	This Distribution R7			Sures	Screen	SureScreen hCG GHCGC	_	Positive	Positive	Positive	Negative		
Sigma	score not o	calculated	d:		1						Sures	Screen	SureScreen hCG GHCGC	_	Negative	Negative	Negative	Negative
Insuffic	ient results	submitte	ed								Sures	Screen	SureScreen hCG GHCGC	_	Desitive	Positive	Positive	Negative
Please note: Linear regression	on uses CF	correcte	d data.			0.00	25.00 50.00 75	5.00 100.0	0 125.00 15	50.00	Sures	Screen	SureScreen hCG GHCGC	_	Positive	Positive	Positive	Negative
· · · · · · · · · · · · · · · · · · ·											Sures	Screen	SureScreen bCG GHCGC	_	Positive	Positive	Positive	Negative
This Distribution HC03	25					+ 30.0					Sures	Screen	SureScreen bCG GHCGC	_	Positive	Positive	Positive	Negative
						24.0				Not c	alculate SureS	Screen	SureScreen bCG GHCGC	_	Positive	Positive	Positive	Negative
						18.0	T			nume	SureS	Screen	SureScreen hCG GHCGC	-	Positive	Positive	Positive	Negative
28.0 37.5 47.0	56.5 66.0	75.5	85.0			10.0					SureS	Screen	SureScreen hCG GHCGC	_	Positive	Positive	Positive	Negative
+ 10.0-						12.0				X axis	s = targ SureS	Screen	SureScreen Midstream GHCGMS		Positive	Positive	Positive	Negative
8.0-			N	lot calculated. Sa	ample	6.0-	I I)		"x" = O = y	your cu your me Veda	a.Lab	BabyCheck-1	_	Positive	Positive	Positive	Negative
6.0			n	umerical results	less t	0.0	<u> </u>			Li = y	t2 We0Veda	a.Lab	BabyCheck-1	_	Positive	Positive	Positive	Negative
0.01						6.0	1 Sugar			I = m	ethod ± Veda	a.Lab	BabyCheck-1	_				
4.0			Х	axis = target val	lue	12.0	······	·		♦ = ye	our prev Veda	a.Lab	BabyCheck-1	_	Positive	Positive	Positive	Negative
2.0			- <u>`</u>	c" = your current	resul	12.0					VISITECT	Pregnancy	VISITECT Pregnancy	_	Positive	Positive	Positive	Negative
00 J			J 8	a – your method l = your method s	speci	18.0									1			1
2.0				= ±2 WeQas S = method ±2 SD	D)	24.0-						Inte	erpretation		Positive	Equivocal, further investigation	Equivocal, further investigation	Negative
4.0			•	= your previous	resul	- 30.01						Spi	iked Value		Approximately 35 IU/L	Approximately 22 IU/L	Approximately 13 IU/L	Approximately 4 IU/L
6.0	and the second second second		1															

8.0

Weqas Unit 6, Parc Tŷ Glas Llanishen, Cardiff, CF14 5DU

Tel: 02920 314750 Email: contact@weqas.com

EXTERNAL QUALITY ASSESSMENT

INTERNAL QUALITY CONTROL

REFERENCE MEASUREMENT SERVICES

EDUCATION & TRAINING

Weqas

GLOBAL PROVIDER OF QUALITY IN DIAGNOSTIC MEDICINE

Analytical performance specifications (APS) are we providing clinically appropriate APS for External Quality Assessment?

Annette Thomas

Director

www.weqas.com

Clinically Relevant Performance Specification

Weqas

Method

Laboratory method performance data from Wegas in the UK was collected over the last five years across a wide clinical concentration for the common analytes in Clinical Biochemistry. The data covered 60 distributions using up to 240 samples, assayed by up to 200 laboratories using a range of analysers. Precision profiles were calculated for each sample for the overall data and for each of the major methods and analysers used for that analyte. The minimum number of data points for each analyser for each sample distribution was set at 5. The interlaboratory variation was represented as Standard Deviation, (SD), and/or Coefficient of variation, (CV), and plotted against analyte concentration. For certain analytes the data was also assessed according to whether the analyte was used for laboratory diagnosis or POCT monitoring.

HbA1c Precision Profile

Overall data also includes affects of bias. Data includes laboratory and POCT methods

Can we use universal APS based on biological variation? – NO

Should we use different APS for laboratory and POOPeqaS methods? - YES

Some laboratory electrophoresis and Ion exchange methods can achieve Minimum

(mmol/mol)

HbA1c Overall mean

HbA1c Precision Profile Overall mean data (mmol/mol)

Can we use APS based on best lab method?

Laboratory Ion Exchange close to desirable

HbA1c Precision Profile, Lab Methods, SD mmol/mol

Analytical performance specification of Test related to disease process

- Specification should be designed to provide performance assessment that best meets the needs of the service.
- What laboratory service is being provided?
 - Diagnosis
 - Prognosis
 - Monitoring
 - Screening

Performance specification may be different for the same analyte used in different settings

HbA1c Precision Profile, POCT Methods, SD mmol/mol

Weqas

Strategy for HbA1c

• Monitoring - Need method that is stable over time. Monitor intralaboratory variation as well as interlaboratory variation.

• Diagnosis - Need to ensure that WHO global target goals are valid. Monitor bias of method (lab performance) to standardised procedure (IFCC method).

WHO Recommendation

HbA1c can be used as a diagnostic test for diabetes providing that stringent quality assurance tests are in place and assays are standardised to criteria aligned to the international reference values, and there are no conditions present which preclude its accurate measurement.

An HbA1c of 48 mmol/mol (6.5%) is recommended as the cut point for diagnosing diabetes. A value of less than 48 mmol/mol does not exclude diabetes diagnosed using glucose tests.

APS based on Biological variation

	Intervention target		TEa (%)		Proposed APS
Analyte	Conc.	Min	Des	Opt	TEa (%)
Na	135 mmol/L	0.9	0.6	0.3	1.0 hybrid (best method)
К	3.5 mmol/L	7.3	4.9	2.4	Hybrid (2.4 opt + 4.9 des)
Са	2.2 mmol/L	3.4	2.3	1.1	3.4 min
Creat	90 μmol/L	11.7	7.8	3.9	7.8 des
Glucose	2.0 / 6.5 mmol/L	9.2	6.1	3.1	6.1 des
Urate	360 μmol/L	19	12.6	6.3	Hybrid (6.3 opt +12.6 des)
Cholesterol	5.0 mmol/L	12.5	8.3	4.2	8.3 des
HDL	1.0 mmol/L	14.9	9.9	5.0	9.9 des
HbA1c	48 mmol/mol	4.7	3.1	1.6	5.0 hybrid (min + best method)

Highlighted TEa where minimum Biological goals not achievable