

Where is POCT Going? Challenges for Governance and Performance

Annette Thomas

Weqas Rapid advances in biosensor technology - the smartphone

Stanford University School of Medicine (Bio-Acoustic MEMS in Medicine Labs) developed assays for the simple and rapid detection of HIV-1, various bacteria, and CD4+ T lymphocytes

A Smartphone-Based Automatic Measurement Method for Colorimetric pH Detection Using a Color Adaptation Algorithm

Sung Deuk Kim 1, Youngmi Koo 2 and Yeoheung Yun 2,*

- Department of Electronic Engineering Education, Andong National University, 1375 Gyeongdong-ro, Andong, Gyeongsangbuk-do 36729, Korea; sdkim@andong.ac.kr
- FIT BEST Laboratory, Department of Chemical, Biological, and Bioengineerin North Carolina A&T State University, 1601 E. Market St., Greensboro, NC 27411, USA; kooym20120503@gmail.com
- Correspondence: yyun@ncatedu; Tel.: +1-336-285-3226

RESEARCH ARTICLE

A lab-on-phone instrument with varifocal microscope via a liquid-actuated aspheric lens

Yiin-Kuen Fuh^{1,2} +, Zheng-Hong Lai¹, Li-Han Kau¹, Hung-Jui Huang¹

1 Institute of Opto-mechatronics Engineering, National Central University, Jhongii City, Taoyuan County Taiwan, 2 Department of Mechanical Engineering, National Central University, Jhongli City, Taoyuan Count

* mikefuh@ac.nou.edu.tw

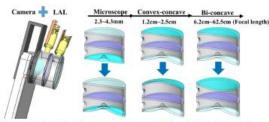


Fig 3. The structure and working mechanism of proposed LAL. Three distinctively different modes can be operated as microscope, or mery concave and bi-concave modes, respectively. The opposed LAL can be easily mounted on a smart phone via a 3d printe difficture as indicated. In the microscope mode, the tunable shapes of APLMC vary with injected volume at the bottom chamber (tunable range is experimentally me asured 2.3~4.3 mm). For the operations of convex-concave mode and bi-concave mode, the tunable range can be a drieved as 1.2-2.5 cm (macro mode) and 6.2-62.5 cm (macro mode) respectively

https://doi.org/10.1371/journal.pane.0179389.p003

SCIENTIFIC REPORTS

All-printed highly sensitive 2D MoS₂ based multi-reagent immunosensor for smartphone based point-of-care diagnosis

Received: 3 March 2017 Accepted: 30 May 2017 Published online: 19 July 2017

Memoon Sajid¹, Ahmed Osman^{2,3}, Ghayas Uddin Siddiqui¹, Hyun Bum Kim¹, Soo Wan Kim¹, Jeong Bum Ko1, Yoon Kyu Lim4 & Kyung Hyun Choi1

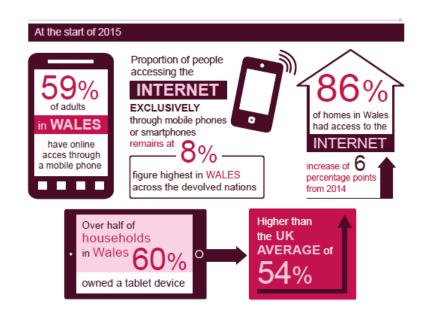
Large number of applications on infectious disease

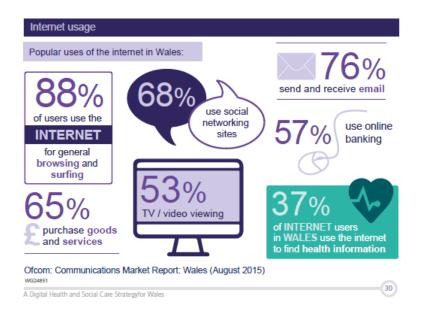
The Drivers...digital health and social care

Routinely use digital apps, wearable devices and other online resources to be well-informed and active participants in their care, able to make informed decisions and lifestyle choices to maintain their well-being.

Connect online with health and care services in the same way they do with other aspects of their life.

Use digitally-enabled services routinely to monitor longterm conditions and daily tasks to support independent living for those individuals and families.


Wegas


The Drivers...digital health and social care

- Decreasing costs of sensors
- Miniaturization of physiological sensors
- Integration of sensors into consumer-end devices and accessories
- Rising share of ageing population
- Increasing incidences of chronic and lifestyle diseases
- Increased health and fitness awareness
- Rise in home and remote patient monitoring
- Reduced digital health costs
- Accountable care organizations and reimbursements
- Increasing mobile and smartphone penetration
- Increasing patient/physician acceptance
- Entry of big players such as Apple, Google, Microsoft and Amazon

The digital revolution

- 170,000 mHealth Apps available in Apple and Google stores.
- 40% of these apps have fewer than 5,000 downloads.
- The average lifecycle of an app is 9 weeks.
- 10% of mHealth apps can connect to a device or sensor that provides physical function data.
- No NHS Wales standards/kitemarking currently exists for apps.
- NHS Choices Health Apps library recommended apps which sold data to third parties

Wegas

Diagnostics Anywhere – passive measurement

CGM funding available on the NHS UK

Flash glucose meter

Challenges – implications for Quality

Is the performance of the POCT device adequate?
Who decides whether a device is good enough?
Should POCT be the same quality as laboratory tests?

- No performance specification in ISO 15189/22870
- FDA/ CE marking is that good enough?

Challenges – implications for Quality

- Define what is adequate? Quality compromise
- Specification should be designed to provide performance that best meets the needs of the service.
- It will depends on clinical utility of test what it is being used for.
- And how the service is being provided how it is being used
- TAT can be more important e.g. HIV results / high risk population.
- Greater patient engagement
 remote areas / at risk population.
- Greater patient compliance e.g. ownership of chronic disease management

Wegas

Analytical Performance specification related to test utilization

Diagnosis

Q. Has the patient got disease XXX?

Is the result significantly differe If global "cut off" used – trueness (bias) becomes important

Monitoring

Q. Is the result significantly differen Variation (imprecision) becomes important Is the patient condition better or worse?

Should I change patient management?

Population Screening

Quick and easy may override need for quality

Q. Is this subject at risk of XXX and will they need further investigation?

Analytical performance specification of Test related to disease process

- Specification should be designed to provide performance assessment that best meets the needs of the service.

 e.g. Cholesterol
- What service is being provided?
 - Diagnosis
 - Triage
 - Monitoring chronic disease
 - Screening HealthChecks

Performance specification may be different for the same analyte used in different settings Total Error ± 8%

18%

Challenges – IQC & EQA

- How to IQC & EQA for implanted devices?
- Matrix effects measurand in whole blood may not be stable so how do we undertake EQA?
- How do we assess the complete process? for pre term markers the procedure involves obtaining a swab of cervical secretion and eluting in buffer – EQA of analytical process but not pre-analytical stage?

Challenges - Information Governance

- IG Patient data entering the wrong hands or being lost in error. Need robust data security. Privacy and security concerns
- Lack of clarity in health communication protocols and standards
- Interoperability issues with TECS

All results need to go back to the patient record Cloud servers SMS, 4G, fibre optics etc Hosted Middleware Laboratory Anywhere Multiple Access: Quality Accessed Quality Accessed Acce

Conclusion

- Rapid advancement in biosensor technology combined with the "digital revolution" within healthcare is driving the increase in the development and use of POCT.
- Our challenges are to ensure that the performance meets the clinical utility of the test, that governance processes are robust and that information governance is not compromised.

References

- Delivering the benefits of digital healthcare.
 https://www.nuffieldtrust.org.uk/research/delivering-the-benefits-of-digital-health-care
- Informed health and care A digital health and social care strategy for Wales. http://gov.wales/topics/health/nhswales/about/e-health/?lang=en
- 3. Report from the first EFLM Strategic Conference. https://www.eflm.eu/files/efcc/EFLM%20Strategic%20Conference Report.pdf